Software Engineering: A Practitioner’'s Approach, 6/e

Chapter 14
Software Testing Techniques

copyright © 1996, 2001, 2005
R.S. Pressman & Associates, Inc.

For University Use Only
May be reproduced ONLY for student use at the university level
when used in conjunction with Software Engineering: A Practitioner's Approach.
Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Testability

Operability—it operates cleanly

Observability—the results of each test case are readily
observed

Controllability—the degree to which testing can be automated
and optimized

Decomposability—testing can be targeted

Simplicity—reduce complex architecture and logic to simplify
tests

Stability—few changes are requested during testing
Understandability—of the design

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

What is a “Good” Test?

A good test has a high probability of finding
an error

A good test is not redundant.
A good test should be “best of breed”

A good test should be neither too simple nor
too complex

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Test Case Design

"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer -

OBJECTIVE to uncover errors
CRITERIA in a complete manner

CONSTRAINT with a minimum of effort and time

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Exhaustive Testing

loop <20 X

There are 101 ¢ possible paths! If we execute one
test per millisecond, it would take 3,170 years to
test this program!!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Selective Testing

Selected path

loop <20 X

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Software Testing

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

White-Box Testing

T
*

1

... our goal is to ensure that all
statements and conditions have
been executed at least once ...

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Why Cover?

B |ogic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

we oftenbelievethat a path is not
likely to be executed; In fact, reality is
often counter intuitive

typographical errors are random; it's
likely that untested paths will contain
some

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Basis Path Testing

First, we compute the cyclomatic
complexity:

number of simple decisions + 1
or
number of enclosed areas + 1

In this case, V(G) = 4

-
.

S
¢

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Cyclomatic Complexity

A number of industry studies have indicated
that the higher V(G), the higher the probability
Or errors.

modules ““
lllllll .

v(©)

modaules in this range are
more error prone

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Basis Path Testing

Next, we derive the
independent paths:

Since V(G) = 4,
there are four paths

Finally, we derive test
cases to exercise these
paths.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Basis Path Testing Notes

H you don't need a flow chart,
but the picture will help when
you trace program paths

count each simple logical test,
compound tests count as 2 or
more

basis path testing should be
applied to critical modules

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Graph Matrices

m A graph matrix is a square matrix whose size
(i.e., number of rows and columns) is equal to
the number of nodes on a flow graph

Each row and column corresponds to an
identified node, and matrix entries correspond to

connections (an edge) between nodes.

By adding a /ink weight to each matrix entry, the
graph matrix can become a powerful tool for
evaluating program control structure during
testing

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Control Structure Testing

Condition testing — a test case design method that
exercises the logical conditions contained in a program
module

Data flow testing — selects test paths of a program
according to the locations of definitions and uses of
variables in the program

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Loop Testing
) 1 =

i
Bl _?
L]

!

Nested
Loops |
Concatenated

Loops Unstructured
Loops

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Loop Testing: Simple Loops

Minimum conditions—Simple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop m<n
5. (n-1), n, and (n+1) passes through
the loop

where n is the maximum number
of allowable passes

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Loop Testing: Nested Loops

Nested Loops

Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.

Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.

Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

Concatenated Loops

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*

for example, the final loop counter value of loop 1 is
used to initialize loop 2.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Black-Box Testing

g
requirements

input

t—:vents

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Black-Box Testing

How is functional validity tested?
How is system behavior and performance tested?
What classes of input will make good test cases?

Is the system particularly sensitive to certain input
values?

How are the boundaries of a data class isolated?

What data rates and data volume can the system
tolerate?

What effect will specific combinations of data have
on system operation?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Graph-Based Methods

To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

In this context, we
consider the term
“objects” in the broadest
possible context. It
encompasses data
objects, traditional
components (modules),
and object-oriented
elements of computer
software.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’'s Approach, 6/e and are provided

Directed link
(link weight)

Node weight
(value

)

Undirected link

Parallel links

menu select generates _ [document
(generationtime < 1.0 sec) window

allows editing
is represented as 2 Attributes:

document background color: white

tex text color: default color
t or preferences

with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Equivalence Partitioning

user output FK
querles mouse formats Input

picks prompts

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Sample Equivalence
Classes

Valid data
user supplied commands

responses to system prompts
file names
computational data
physical parameters
bounding values

initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

Invalid data
data outside bounds of the program
physically impossible data
proper value supplied in wrong place

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Boundary Value Analysis

L

input domain domain

output

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Comparison Testing

s Used only in situations in which the reliability of software
Is absolutely critical (e.g., human-rated systems)

m Separate software engineering teams develop independent
versions of an application using the same specification

m Each version can be tested with the same test data to ensure
that all provide identical output

= Then all versions are executed in parallel with real-time
comparison of results to ensure consistency

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Orthogonal Array Testing

s Used when the number of input parameters is small and
the values that each of the parameters may take are
clearly bounded

Z

RE.E

X—»

One input item at a time L9 orthogonal array

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’'s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

OOT—Test Case Design

Berard [BER93] proposes the following approach:

1. Each test case should be uniquely identified and should be explicitly
associated with the class to be tested,

2. The purpose of the test should be stated,

3. Alist of testing steps should be developed for each test and should
contain [BER94]:

a. a list of specified states for the object that is to be tested

b. alist of messages and operations that will be exercised as
a consequence of the test

a list of exceptions that may occur as the object is tested

a list of external conditions (i.e., changes in the environment external
to the software that must exist in order to properly conduct the test)

supplementary information that will aid in understanding or
implementing the test.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Testing Methods

m Fault-based testing

m The tester looks for plausible faults (i.e., aspects of the implementation of the
system that may result in defects). To determine whether these faults exist, test
cases are designed to exercise the design or code.

m Class Testing and the Class Hierarchy

= Inheritance does not obviate the need for thorough testing of all derived classes.
In fact, it can actually complicate the testing process.

m Scenario-Based Test Design

m Scenario-based testing concentrates on what the user does, not what the
product does. This means capturing the tasks (via use-cases) that the user has
to perform, then applying them and their variants as tests.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

OOT Methods: Random Testing

s Random testing
= identify operations applicable to a class
= define constraints on their use

= identify a miminum test sequence

m an operation sequence that defines the minimum life
history of the class (object)

= generate a variety of random (but valid) test sequences

m exercise other (more complex) class instance life
histories

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

OOT Methods: Partition Testing

m Partition Testing

m reduces the number of test cases required to test a class in
much the same way as equivalence partitioning for
conventional software

state-based partitioning

m categorize and test operations based on their ability to change
the state of a class

attribute-based partitioning

m categorize and test operations based on the attributes that they
use

category-based partitioning
m categorize and test operations based on the generic function
each performs

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

OOT Methods: Inter-Class Testing

m Inter-class testing

m For each client class, use the list of class operators to
generate a series of random test sequences. The operators
will send messages to other server classes.

For each message that is generated, determine the
collaborator class and the corresponding operator in the
server object.

For each operator in the server object (that has been invoked
by messages sent from the client object), determine the
messages that it transmits.

For each of the messages, determine the next level of
operators that are invoked and incorporate these into the test
sequence

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

OOT Methods: Behavior Testing

The tests to be o
pt R set up
desighed should @ o setupAcont acct

achieve all state I
coverage [KIR94]. (il

That iS, the deposit
operation

sequences should

balance .
cause the credit O withdraw

accntinfo

Account class to .
P withdrawal
make transition (final)

through all S
allowable states @—@ ———— ”°”2”§é?'”g|

Figure 14.3 State diagram for Account class (adapted from [KIR94])

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’'s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Testing Patterns

Pattern name: pair testing
Abstract: A process-oriented pattern, pair testing describes a technique that is
analogous to pair programming (Chapter 4) in which two testers work together
to design and execute a series of tests that can be applied to unit, integration
or validation testing activities.

Pattern name: separate test interface

Abstract: There is a need to test every class in an object-oriented system,
including “internal classes” (i.e., classes that do not expose any interface
outside of the component that used them). The separate test interface pattern
describes how to create “a test interface that can be used to describe specific
tests on classes that are visible only internally to a component.” [LANO1]

Pattern name: scenario testing
Abstract: Once unit and integration tests have been conducted, there is a need
to determine whether the software will perform in a manner that satisfies users.
The scenario testing pattern describes a technique for exercising the software
from the user’s point of view. A failure at this level indicates that the software
has failed to meet a user visible requirement. [KANO1]

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

