
Software Engineering: A Practitioner’s Approach, 6/eSoftware Engineering: A Practitioner’s Approach, 6/e

Chapter 14Chapter 14
Software Testing TechniquesSoftware Testing Techniques

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 1

copyright © 1996, 2001, 2005

R.S. Pressman & Associates, Inc.

For University Use Only
May be reproduced ONLY for student use at the university level

when used in conjunction with Software Engineering: A Practitioner's Approach.
Any other reproduction or use is expressly prohibited.

TestabilityTestability

�� OperabilityOperability——it operates cleanlyit operates cleanly

�� ObservabilityObservability——the results of each test case are readily the results of each test case are readily

observedobserved

�� ControllabilityControllability——the degree to which testing can be automated the degree to which testing can be automated

and optimizedand optimized

�� DecomposabilityDecomposability——testing can be targetedtesting can be targeted

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

�� DecomposabilityDecomposability——testing can be targetedtesting can be targeted

�� SimplicitySimplicity——reduce complex architecture and logic to simplify reduce complex architecture and logic to simplify

teststests

�� StabilityStability——few changes are requested during testingfew changes are requested during testing

�� UnderstandabilityUnderstandability——of the designof the design

What is a “Good” Test?What is a “Good” Test?

�� A good test has a high probability of finding A good test has a high probability of finding
an erroran error

�� A good test is not redundant.A good test is not redundant.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

�� A good test should be “best of breed” A good test should be “best of breed”

�� A good test should be neither too simple nor A good test should be neither too simple nor
too complextoo complex

Test Case DesignTest Case Design

"Bugs lurk in corners "Bugs lurk in corners
and congregate at and congregate at
boundaries ..."boundaries ..."

Boris BeizerBoris Beizer

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

OBJECTIVEOBJECTIVE

CRITERIACRITERIA

CONSTRAINTCONSTRAINT

to uncover errorsto uncover errors

in a complete mannerin a complete manner

with a minimum of effort and timewith a minimum of effort and time

Exhaustive TestingExhaustive Testing

loop < 20 Xloop < 20 X

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

loop < 20 Xloop < 20 X

There are 10 possible paths! If we execute oneThere are 10 possible paths! If we execute one
test per millisecond, it would take 3,170 years totest per millisecond, it would take 3,170 years to
test this program!!test this program!!

1414

Selective TestingSelective Testing

Selected pathSelected path

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

loop < 20 Xloop < 20 X

Software TestingSoftware Testing

white-box
methods

black-box

methods

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

Methods

Strategies

WhiteWhite--Box TestingBox Testing

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 8

... our goal is to ensure that all ... our goal is to ensure that all
statements and conditions have statements and conditions have
been executed at least once ...been executed at least once ...

Why Cover?Why Cover?

logic errors and incorrect assumptions logic errors and incorrect assumptions
are inversely proportional to a path's are inversely proportional to a path's
execution probabilityexecution probability

we often we often believebelievethat a path is not that a path is not
likely to be executed; in fact, reality is likely to be executed; in fact, reality is

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 9

likely to be executed; in fact, reality is likely to be executed; in fact, reality is
often counter intuitiveoften counter intuitive

typographical errors are random; it's typographical errors are random; it's
likely that untested paths will contain likely that untested paths will contain
some some

Basis Path TestingBasis Path Testing

First, we compute the cyclomatic
complexity:

number of simple decisions + 1

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

or

number of enclosed areas + 1

In this case, V(G) = 4

Cyclomatic ComplexityCyclomatic Complexity

A number of industry studies have indicated A number of industry studies have indicated
that the higher V(G), the higher the probability that the higher V(G), the higher the probability
or errors.or errors.

modulesmodules

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 11

V(G)V(G)

modules in this range are modules in this range are
more error pronemore error prone

Basis Path TestingBasis Path Testing
Next, we derive the Next, we derive the
independent paths:independent paths:

Since V(G) = 4,Since V(G) = 4,
there are four pathsthere are four paths

Path 1: 1,2,3,6,7,8Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8Path 2: 1,2,3,5,7,8

11

22

33
44

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 12

Path 2: 1,2,3,5,7,8Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8Path 3: 1,2,4,7,8
Path 4: 1,2,4,7,2,4,...7,8Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive testFinally, we derive test
cases to exercise these cases to exercise these
paths.paths.

44

55 66

77

88

Basis Path Testing NotesBasis Path Testing Notes

you don't need a flow chart, you don't need a flow chart,
but the picture will help when but the picture will help when
you trace program pathsyou trace program paths

count each simple logical test, count each simple logical test,

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 13

count each simple logical test, count each simple logical test,
compound tests count as 2 or compound tests count as 2 or
moremore

basis path testing should be basis path testing should be
applied to critical modulesapplied to critical modules

Graph MatricesGraph Matrices
�� A graph matrix is a square matrix whose size A graph matrix is a square matrix whose size

(i.e., number of rows and columns) is equal to (i.e., number of rows and columns) is equal to
the number of nodes on a flow graphthe number of nodes on a flow graph

�� Each row and column corresponds to an Each row and column corresponds to an
identified node, and matrix entries correspond to identified node, and matrix entries correspond to
connections (an edge) between nodes. connections (an edge) between nodes.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 14

connections (an edge) between nodes. connections (an edge) between nodes.

�� By adding a By adding a link weightlink weight to each matrix entry, the to each matrix entry, the
graph matrix can become a powerful tool for graph matrix can become a powerful tool for
evaluating program control structure during evaluating program control structure during
testingtesting

Control Structure TestingControl Structure Testing

�� Condition testingCondition testing —— a test case design method that a test case design method that

exercises the logical conditions contained in a program exercises the logical conditions contained in a program
modulemodule

�� Data flow testingData flow testing —— selects test paths of a program selects test paths of a program

according to the locations of definitions and uses of according to the locations of definitions and uses of

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 15

according to the locations of definitions and uses of according to the locations of definitions and uses of
variables in the programvariables in the program

Loop TestingLoop Testing

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 16

Nested Nested
LoopsLoops

ConcatenatedConcatenated
Loops Loops Unstructured Unstructured

LoopsLoops

Simple Simple
looploop

Loop Testing: Simple LoopsLoop Testing: Simple Loops

Minimum conditionsMinimum conditions——Simple LoopsSimple Loops

1. skip the loop entirely1. skip the loop entirely

2. only one pass through the loop2. only one pass through the loop

3. two passes through the loop3. two passes through the loop

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 17

3. two passes through the loop3. two passes through the loop

4. m passes through the loop m < n4. m passes through the loop m < n

5. (n5. (n--1), n, and (n+1) passes through 1), n, and (n+1) passes through
the loopthe loop

where n is the maximum number where n is the maximum number
of allowable passesof allowable passes

Loop Testing: Nested LoopsLoop Testing: Nested Loops

Start at the innermost loop. Set all outer loops to their Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.minimum iteration parameter values.

Test the min+1, typical, maxTest the min+1, typical, max--1 and max for the 1 and max for the
innermost loop, while holding the outer loops at their innermost loop, while holding the outer loops at their
minimum values.minimum values.

Move out one loop and set it up as in step 2, holding all Move out one loop and set it up as in step 2, holding all

Nested LoopsNested Loops

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 18

Move out one loop and set it up as in step 2, holding all Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until other loops at typical values. Continue this step until
the outermost loop has been tested.the outermost loop has been tested.

If the loops are independent of one another If the loops are independent of one another
then treat each as a simple loopthen treat each as a simple loop
else* treat as nested loopselse* treat as nested loops

endif* endif*

for example, the final loop counter value of loop 1 is for example, the final loop counter value of loop 1 is
used to initialize loop 2.used to initialize loop 2.

Concatenated LoopsConcatenated Loops

BlackBlack--Box TestingBox Testing

requirementsrequirements

outputoutput

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 19

eventseventsinputinput

outputoutput

BlackBlack--Box TestingBox Testing

�� How is functional validity tested?How is functional validity tested?

�� How is system behavior and performance tested?How is system behavior and performance tested?

�� What classes of input will make good test cases?What classes of input will make good test cases?

�� Is the system particularly sensitive to certain input Is the system particularly sensitive to certain input
values?values?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 20

values?values?

�� How are the boundaries of a data class isolated?How are the boundaries of a data class isolated?

�� What data rates and data volume can the system What data rates and data volume can the system
tolerate?tolerate?

�� What effect will specific combinations of data have What effect will specific combinations of data have
on system operation?on system operation?

GraphGraph--Based MethodsBased Methods

object
#1

Directed link

(link weight)

object
#2

object

#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

To understand the To understand the
objects that are objects that are
modeled in modeled in
software and the software and the
relationships that relationships that
connect these connect these
objectsobjects

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 21

new

file

menu select generates

(generation time < 1.0 sec)

document

window

document

tex
t

is represented as

contains

Attributes:

background color: white

text color: default color
 or preferences

(b)

allows editing
of

In this context, we In this context, we
consider the term consider the term
“objects” in the broadest “objects” in the broadest
possible context. It possible context. It
encompasses data encompasses data
objects, traditional objects, traditional
components (modules), components (modules),
and objectand object--oriented oriented
elements of computer elements of computer
software.software.

Equivalence PartitioningEquivalence Partitioning

useruser
queriesqueries

outputoutput
formatsformats

FKFK
inputinput

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 22

queriesqueries
mousemouse
pickspicks

outputoutput
formatsformats

promptsprompts

inputinput
datadata

Sample Equivalence Sample Equivalence
ClassesClasses

user supplied commandsuser supplied commands

responses to system promptsresponses to system prompts

file namesfile names
computational datacomputational data

physical parameters physical parameters
bounding valuesbounding values

Valid dataValid data

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 23

bounding valuesbounding values
initiation valuesinitiation values

output data formattingoutput data formatting
responses to error messagesresponses to error messages
graphical data (e.g., mouse picks)graphical data (e.g., mouse picks)

data outside bounds of the program data outside bounds of the program
physically impossible dataphysically impossible data
proper value supplied in wrong placeproper value supplied in wrong place

Invalid dataInvalid data

Boundary Value AnalysisBoundary Value Analysis

useruser
queriesqueries

outputoutput
formatsformats

FKFK
inputinput

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 24

queriesqueries
mousemouse
pickspicks

formatsformats

promptsprompts

inputinput
datadata

outputoutput
domaindomaininput domaininput domain

Comparison TestingComparison Testing

�� Used only in situations in which the reliability of software Used only in situations in which the reliability of software

is absolutely critical (e.g., humanis absolutely critical (e.g., human--rated systems)rated systems)

�� Separate software engineering teams develop independent Separate software engineering teams develop independent
versions of an application using the same specificationversions of an application using the same specification

�� Each version can be tested with the same test data to ensure Each version can be tested with the same test data to ensure

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 25

�� Each version can be tested with the same test data to ensure Each version can be tested with the same test data to ensure
that all provide identical output that all provide identical output

�� Then all versions are executed in parallel with realThen all versions are executed in parallel with real--time time
comparison of results to ensure consistencycomparison of results to ensure consistency

Orthogonal Array TestingOrthogonal Array Testing

� Used when the number of input parameters is small and
the values that each of the parameters may take are
clearly bounded

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 26

One input item at a time L9 orthogonal array

XY

Z

X
Y

Z

OOTOOT——Test Case DesignTest Case Design

Berard [BER93] proposes the following approach:Berard [BER93] proposes the following approach:

1.1. Each test case should be uniquely identified and should be explicitly Each test case should be uniquely identified and should be explicitly
associated with the class to be tested,associated with the class to be tested,

2.2. The purpose of the test should be stated,The purpose of the test should be stated,

3.3. A list of testing steps should be developed for each test and should A list of testing steps should be developed for each test and should
contain [BER94]:contain [BER94]:

a.a. a list of specified states for the object that is to be testeda list of specified states for the object that is to be tested

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 27

b.b. a list of messages and operations that will be exercised as a list of messages and operations that will be exercised as
a consequence of the testa consequence of the test

c.c. a list of exceptions that may occur as the object is testeda list of exceptions that may occur as the object is tested

d.d. a list of external conditions (i.e., changes in the environment external a list of external conditions (i.e., changes in the environment external
to the software that must exist in order to properly conduct the test)to the software that must exist in order to properly conduct the test)

e.e. supplementary information that will aid in understanding or supplementary information that will aid in understanding or
implementing the test.implementing the test.

Testing MethodsTesting Methods

�� FaultFault--based testingbased testing

�� The tester looks for plausible faults (i.e., aspects of the implementation of the The tester looks for plausible faults (i.e., aspects of the implementation of the

system that may result in defects). To determine whether these faults exist, test system that may result in defects). To determine whether these faults exist, test

cases are designed to exercise the design or code. cases are designed to exercise the design or code.

�� Class Testing and the Class HierarchyClass Testing and the Class Hierarchy

�� Inheritance does not obviate the need for thorough testing of all derived classes. Inheritance does not obviate the need for thorough testing of all derived classes.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 28

�� Inheritance does not obviate the need for thorough testing of all derived classes. Inheritance does not obviate the need for thorough testing of all derived classes.

In fact, it can actually complicate the testing process.In fact, it can actually complicate the testing process.

�� ScenarioScenario--Based Test DesignBased Test Design

�� ScenarioScenario--based testing concentrates on what the user does, not what the based testing concentrates on what the user does, not what the

product does. This means capturing the tasks (via useproduct does. This means capturing the tasks (via use--cases) that the user has cases) that the user has

to perform, then applying them and their variants as tests.to perform, then applying them and their variants as tests.

OOT Methods: Random TestingOOT Methods: Random Testing

�� Random testingRandom testing

�� identify operations applicable to a classidentify operations applicable to a class

�� define constraints on their usedefine constraints on their use

�� identify a miminum test sequenceidentify a miminum test sequence

�� an operation sequence that defines the minimum life an operation sequence that defines the minimum life

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 29

�� an operation sequence that defines the minimum life an operation sequence that defines the minimum life
history of the class (object)history of the class (object)

�� generate a variety of random (but valid) test sequencesgenerate a variety of random (but valid) test sequences

�� exercise other (more complex) class instance life exercise other (more complex) class instance life
historieshistories

OOT Methods: Partition TestingOOT Methods: Partition Testing

�� Partition TestingPartition Testing

�� reduces the number of test cases required to test a class in reduces the number of test cases required to test a class in
much the same way as equivalence partitioning for much the same way as equivalence partitioning for
conventional softwareconventional software

�� statestate--based partitioningbased partitioning

�� categorize and test operations based on their ability to change categorize and test operations based on their ability to change
the state of a classthe state of a class

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 30

�� attributeattribute--based partitioningbased partitioning
�� categorize and test operations based on the attributes that they categorize and test operations based on the attributes that they

useuse

�� categorycategory--based partitioningbased partitioning
�� categorize and test operations based on the generic function categorize and test operations based on the generic function

each performseach performs

OOT Methods: InterOOT Methods: Inter--Class TestingClass Testing

�� InterInter--class testingclass testing

�� For each client class, use the list of class operators to For each client class, use the list of class operators to
generate a series of random test sequences. The operators generate a series of random test sequences. The operators
will send messages to other server classes.will send messages to other server classes.

�� For each message that is generated, determine the For each message that is generated, determine the
collaborator class and the corresponding operator in the collaborator class and the corresponding operator in the
server object.server object.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 31

server object.server object.

�� For each operator in the server object (that has been invoked For each operator in the server object (that has been invoked
by messages sent from the client object), determine the by messages sent from the client object), determine the
messages that it transmits.messages that it transmits.

�� For each of the messages, determine the next level of For each of the messages, determine the next level of
operators that are invoked and incorporate these into the test operators that are invoked and incorporate these into the test
sequencesequence

OOT Methods: Behavior TestingOOT Methods: Behavior Testing

empty

acctopen setup Accnt

set up

acct

deposit
(initial)

working

acct

deposit

withdraw
balance

The tests to be The tests to be
designed should designed should
achieve all state achieve all state
coverage [KIR94]. coverage [KIR94].
That is, the That is, the
operation operation
sequences should sequences should
cause the cause the

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 32

withdrawal
(final)

dead
acct close

nonworking
acct

withdrawcredit

accntInfo

Figure 14.3 St at e diagram f or Account class (adapt ed f rom [KIR94])

cause the cause the
Account class to Account class to
make transition make transition
through all through all
allowable statesallowable states

Testing PatternsTesting Patterns

Pattern name:Pattern name: pair testingpair testing

Abstract: Abstract: A processA process--oriented pattern, pair testing describes a technique that is oriented pattern, pair testing describes a technique that is
analogous to pair programming (Chapter 4) in which two testers work together analogous to pair programming (Chapter 4) in which two testers work together
to design and execute a series of tests that can be applied to unit, integration to design and execute a series of tests that can be applied to unit, integration
or validation testing activities.or validation testing activities.

Pattern name: Pattern name: separate test interfaceseparate test interface

Abstract: Abstract: There is a need to test every class in an objectThere is a need to test every class in an object--oriented system, oriented system,
including “internal classes” (i.e., classes that do not expose any interface including “internal classes” (i.e., classes that do not expose any interface

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 33

including “internal classes” (i.e., classes that do not expose any interface including “internal classes” (i.e., classes that do not expose any interface
outside of the component that used them). The separate test interface pattern outside of the component that used them). The separate test interface pattern
describes how to create “a test interface that can be used to describe specific describes how to create “a test interface that can be used to describe specific
tests on classes that are visible only internally to a component.” [LAN01]tests on classes that are visible only internally to a component.” [LAN01]

Pattern name: Pattern name: scenario testingscenario testing
Abstract: Abstract: Once unit and integration tests have been conducted, there is a need Once unit and integration tests have been conducted, there is a need
to determine whether the software will perform in a manner that satisfies users. to determine whether the software will perform in a manner that satisfies users.
The scenario testing pattern describes a technique for exercising the software The scenario testing pattern describes a technique for exercising the software
from the user’s point of view. A failure at this level indicates that the software from the user’s point of view. A failure at this level indicates that the software
has failed to meet a user visible requirement. [KAN01]has failed to meet a user visible requirement. [KAN01]

