Microorganisms Causing Infection in Ear-Nose-Throat

Dr. Tetty Aman Nasution, MMedSc
Departemen Mikrobiologi FK USU
External Ear

- Consists of the auricle and EAM (External auditory meatus)
- Skin-lined apparatus
- Approximately 2.5 cm in length
- Ends at tympanic membrane
Anatomy and Physiology

- Auricle is mostly skin-lined cartilage
- External auditory meatus
 - Cartilage: ~40%
 - Bony: ~60%
 - S-shaped
 - Narrowest portion at bony-cartilage junction
Furunculosis

- Acute localized infection
- Lateral 1/3 of posterosuperior canal
- Obstructed apopilosebaceous unit
- Pathogen: *S. aureus*
Furunculosis: Symptoms

- Localized pain
- Pruritus
- Hearing loss (if lesion occludes canal)
Otomycosis

- Fungal infection of EAC skin
- Primary or secondary
- Most common organisms: *Aspergillus* and *Candida*
Otomycosis: Symptoms

- Often indistinguishable from bacterial OE
- Pruritus deep within the ear
- Dull pain
- Hearing loss (obstructive)
- Tinnitus
Otomyocosis: Signs

- Canal erythema
- Mild edema
- White, gray or black fungal debris
Otitis Externa

- Bacterial infection of external auditory canal
- Categorized by time course
 - Acute
 - Subacute
 - Chronic
Acute Otitis Externa (AOE)

- “swimmer’s ear”
- Preinflammatory stage
- Acute inflammatory stage
 - Mild
 - Moderate
 - Severe
Most common pathogens: *P. aeruginosa* and *S. aureus*

Four principles
- Frequent canal cleaning
- Topical antibiotics
- Pain control
- Instructions for prevention
Chronic Otitis Externa (COE)

- Chronic inflammatory process
- Persistent symptoms (> 2 months)
- Bacterial, fungal, dermatological etiologies
Otitis Externa

- **Otitis Externa** - a painful inflammation of the membranous lining of the auditory canal and/or contiguous structures
- **Pathogenesis** - inflammation is most commonly caused by microbial infection.
- **Colonization** of the external ear is prevented by immune and anatomic mechanisms
OE pathogenesis

- Squamous epithelia of the canal constantly slough, while hair follicles sweep laterally, cleaning and act as a barrier.
 - The canal maintains an acidic pH and repels moisture and the presence of normal flora inhibit the overgrowth of virulent bacteria.
 - If any of this is broken compromised there may be colonization by bacteria.
OE pathogenesis

- Bacteria

 - *Pseudomonas aeruginosa* is most common of diffuse infections and most cases of invasive OE
 - *Staphylococcus aureus* typically causes a localized infection from a hair follicle
 - *Streptococcus pyogenes* associated with local infection presenting as folliculitis
 - Polymicrobial infection found in up to 1/3 of cases of diffuse disease
OE pathogenesis

- Other causes of OE
 - Fungal agents
 - *Aspergillus niger-* usually local infection, but can cause invasive infection
 - Pityrosporum
 - *Candida albicans*
 - Hyperkeratotic processes
 - Eczema, psoriasis, seborrheic, or contact dermatitis
OE pathogenesis

- Necrotizing Otis externa is the most severe infectious form of OE
 - Bacterial infection extends from the skin of canal into soft tissue or bone
 - Cranial nerves may be involved
 - Pseudomonas is most common
 - May have bad outcomes
Otitis Externa

Physical findings

- Tenderness with palpation
- Otoscopic exam- canal appears swollen and red with drainage with bacterial infections
- Diffuse cases present with complete involvement
- Localized cases present with focal lesion
- Pseudomonas produces a copious green exudate
- *Staphylococcal* produces yellow crusting in purulent exudate
- Fungal infections presents as a fluffy, white or black malodorous growth
- Except in invasive disease there is no lymphadenopathy
- TMJ pain indicates invasive disease
Otitis Externa

- Diagnostic testing
 - Rarely needed
 - Cultures may be done of discharge if indicated in healthy patients
 - CT or MRI may be needed if suspect invasive disease
Otitis Externa

- Differential Dx
 - OM
 - TMJ
 - Dental disease
 - Trigeminal or glossopharyngeal neuralgia
 - Parotitis
 - Impetigo
 - Herpes zoster
 - Insect bites
 - Mastoiditis
 - Rupture of membrane
 - Excessive cerumen buildup (wax)
Otitis Media

- Otitis Media- OM- inflammation of the structures in the middle ear.
- Otitis media with effusion –OME involves the transudation of plasma from middle ear blood vessels leading to chronic fluid; this can be chronic.
- Acute Otitis Media-AOM is infection in the middle ear.
Otitis Media

- Contributing factors include: allergies, rhinitis, pharyngitis due to swelling of upper airway membranes
- Most common factor is upper airway infections (colds), caused by many different viruses.
 - Influenza, RSV, pneumovirus, adenovirus
Otitis Media

- Patho-bacterial infection (or viral) by nasopharyngeal microorganisms follows eustachian tube dysfunction in which the isthmus becomes obstructed.
- Inflammation results in response to the bacterial products such as endotoxins, creating infection behind the tympanic membrane in the middle ear.
Otitis Media

- OME
 - Patho- caused by collection of plasma fluid from engorged blood vessels resulting from the loss of Eustachian tube patency, either from swelling of the lining or direct blockage
 - Pathogens
 - *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Moraxella catarrhalis* are most common
 - Less common are Streptococcus pyogenes and aureus
 - Up to ½ are viral
Otitis Media Effusion

- **Objective**
 - **OME** - mucous membranes of nose and mouth red/swollen, with recent history of URI.
 - Tympani Membrane may be dull
 - **AOM** - yellow-orange, maybe fiery red and bulging with an area of yellow noted.
 - Bone landmarks and cone of light are not seen. Grayish/white collection of tissue on or behind the TM may be a cholesteatoma.
 - There may be adenopathy of the preauricular and/posterior cervical.
 - With an infected ear and pain at the mastoid bone - more work up may be needed
Otitis Media Effusion

- **Diagnostic Tests**
 - Tests are rarely needed.
 - Should use pneumatic otoscopy.
 - Tympanogram may be helpful otitis with effusion.
 - Cultures are rarely done, but are helpful.
 - X-ray or CT of sinuses or of mastoid area maybe indicated.
 - CBC with severe illness maybe indicated. Hearing tests are needed in some cases or at follow-up
Rhinitis or coryza – inflammation of the nasal mucosa with congestion, rhinorrhea, sneezing, pruritus, post nasal drip

- Allergic
 - Seasonal or perennial

- Nonallergic
 - Infectious, irritant related, vasomotor, hormone-related, associated with medication, or atrophic
 - May be chronic or acute

- Most common types
 - Viral
 - Perennial (hay fever)
Rhinitis

- Epidemiology/Causes
 - Actual prevalence is undocumented, but is very common
 - Occurs at least as much as the common cold
 - Allergic occurs in all age groups
 - Most common in adults 30-40 years
 - Non allergic rhinitis may be acute or chronic
 - Chronic maybe associated with bacterial sinusitis
Rhinitis

- Epidemiology/Causes
 - Atrophic rhinitis affects older adults, but symptoms may begin in the teens
 - Viral URI’s are more frequent in families with young children
 - Exposure to offending allergens is the main risk factor of allergic rhinitis
 - Vasomotor rhinitis is aggravated by low humidity, sudden temperature or pressure change, cold air, strong odors, stress, smoke
 - Certain drugs may precipitate rhinitis- ACE, beta-adrenergic antagonists, some anti-inflammatory agents, even asa
Rhinitis

- Rhinitis Pathogenesis
 - Viral
 - Viral replication in the nasopharynx with varying degrees of nasotracheal inflammation. Associated with viral upper respiratory tract infection
 - Etiologic agents
 - Rhinovirus, influenza, parainfluenza, respiratory syncytial, coronavirus, adenovirus, echovirus, coxsackievirus
 - Most rhinosinusitis is viral
 - Bacterial super-infection rarely occurs
Rhinitis

Rhinitis Pathogenesis

- Allergic rhinitis
 - results from immunoglobulin E (IgE) mediated type I hypersensitivity to airborne irritants affecting the eyes, nose, sinuses, throat, and bronchi
 - IgE antibodies bind to eosinophils and basophils in the bloodstream and the mucosal mast cells.
 - These leukocytes degranulate, releasing chemo inflammatory substances including histamine, leukotrienes, prostaglandin's, slow-reacting substance of anaphylaxis, and erythrocyte chemotactic factor, resulting in increased vasodilatation, capillary permeability, mucus production, smooth muscle contraction and eosinophilia
 - May also be caused by food allergies
Rhinitis

- Rhinitis Pathogenesis
 - Vasomotor rhinitis is chronic, noninfectious process of unknown etiology without accompanying eosinophilia, characterized by periods of abnormal autonomic responsiveness and vascular engorgement unrelated to specific allergens.
 - Causes include hormonal changes, medication overuse, bacterial infection—which can cause atrophic rhinitis.
Rhinitis

- Rhinitis – objective findings
 - Viral- nasal mucosa appears erythematous, throat will appear erythematous and edematous, external nose may appear erythematous, with a crease across the nose (allergic salute). May have swollen turbinates and tonsils. On palpation, the nasal mucosa appear friable.
 - With a secondary bacterial infection the discharge may be green/yellow
Sinusitis

- Sinusitis is an inflammation of the mucous membranes of one or more of the paranasal sinuses; frontal, sphenoid, posterior ethmoid, anterior ethmoid, and maxillary
 - Acute-abrupt onset of infection and post-therapeutic resolution lasting no more than four weeks
 - Subacute with a purulent nasal discharge persist despite therapy, lasting 4-12 weeks
 - Chronic, with episodes of prolonged inflammation with repeated or inadequately treated acute infection lasting greater than 12 consecutive weeks
Sinusitis

- Sinusitis – Pathogenesis
 - Vast majority of acute sinusitis are caused by the same viruses found in URI’s
 - Viral rhinosinusitis is most common
 - Which is the most common cause for acute bacterial sinusitis, from complications in about 2%
 - Sneezing sends fluid from the nares and nasal cavity into the sinuses which is a great place for microbial replication
 - The only reliable way of identifying causative organisms in acute sinusitis is direct sinus aspiration
Sinusitis

- Sinusitis Pathogenesis
 - Pathogens
 - *Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pyogenes, Staph aureus*
Sinusitis

- **Sinusitis objective findings**
 - Purulent secretions, red swollen nasal mucosa, purulent secretions from middle meatus
 - On palpation there is tenderness

- **Sinusitis testing**
 - None is usually indicated
 - X-rays or CT’s may be very helpful
 - Shows air-fluid levels and more than 4mm of mucosal thickening
 - CBC to look for leukocyte elevation
 - Stains or cultures of mucus may be indicated
 - Allergy testing
Immunology and Function of Tonsil

- Part of secondary immune system
- No afferent lymphatics
- Exposed to ingested or inspired antigens passed through the epithelial layer
- Immunologic structure is divided into 4 compartments: reticular crypt epithelium, extra follicular area, mantle zone of the lymphoid follicle, and the germinal center of the lymphoid follicle
Immunology and Function of Tonsil

- Membrane cells and antigen presenting cells are involved in transport of antigen from the surface to the lymphoid follicle.
- Antigen is presented to T-helper cells.
- T-helper cells induce B cells in germinal center to produce antibody.
- Secretory IgA is primary antibody produced.
- Involved in local immunity.
Adenotonsillitis

- Group A beta-hemolytic is most recognized pathogen
- Associated with a risk of rheumatic fever and glomerulonephritis
- Many other organisms are involved
Adenotonsillitis

- Of particular importance are beta-lactamase producing organisms like *Staphylococcus aureus*, *Moraxella catarrhalis*, and *Hemophilus influenzae*.
- In polymicrobial infections beta-lactamase producing organisms can protect Group A strep from eradication with penicillins.
- 39% of all cultured organisms in one study.
Infectious Organisms

Table 8.2. Bacteria and Viruses Commonly Cultured from the Tonsils and Adenoids

<table>
<thead>
<tr>
<th>Category</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
</tr>
<tr>
<td>Aerobic</td>
<td>Group A beta-hemolytic streptococci</td>
</tr>
<tr>
<td></td>
<td>Groups B, C, G streptococcus</td>
</tr>
<tr>
<td></td>
<td>Haemophilus influenzae (type b and nontypeable)</td>
</tr>
<tr>
<td></td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td></td>
<td>Moraxella catarrhalis</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td></td>
<td>Haemophilus parainfluenzae</td>
</tr>
<tr>
<td></td>
<td>Neisseria species</td>
</tr>
<tr>
<td></td>
<td>Mycobacteria species</td>
</tr>
<tr>
<td>Anaerobic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacteroides species</td>
</tr>
<tr>
<td></td>
<td>Peptococcus species</td>
</tr>
<tr>
<td></td>
<td>Peptostreptococcus species</td>
</tr>
<tr>
<td></td>
<td>Actinomyces species</td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epstein-Barr</td>
</tr>
<tr>
<td></td>
<td>Adenovirus</td>
</tr>
<tr>
<td></td>
<td>Influenza A and B</td>
</tr>
<tr>
<td></td>
<td>Herpes simplex</td>
</tr>
<tr>
<td></td>
<td>Respiratory syncytial</td>
</tr>
<tr>
<td></td>
<td>Parainfluenza</td>
</tr>
</tbody>
</table>
Infectious causes of pharyngitis
Viruses

- Major cause of acute respiratory disease
 - Influenza virus
 - Parainfluenza viruses
 - Rhinovirus
 - Adenoviruses
 - Respiratory syncitial virus
 - Coronavirus
Epstein-Barr Virus (EBV)

- Etiologic agent of infectious mononucleosis (IM)
- Herpes virus 4
- Double stranded DNA virus
- Selectively infects B-lymphocytes
Epstein-Barr Virus (EBV)

- Early infections in life are mostly asymptomatic
- Clinical disease is seen in those with delayed exposure (young adults)
- Defined by clinical triad
 - Fever, lymphadenopathy, and pharyngitis combined with +heterophil antibodies and atypical lymphocytes
- Pharyngitis
 - White membrane covering one or both tonsils
 - Petechial rash involving oral and palatal mucosa
Cytomegalovirus (CMV)

- Herpes virus 5
- Ubiquitous
- 50% of adults seropositive
- 10-15% of children seropositive by age 5 yrs
- Etiology of 2/3 of heterophil-negative mononucleosis
CMV

- Clinical manifestation
 - Fever and malaise
 - Pharyngitis and lymphadenopathy less common
 - Esophagitis in HIV infected patients

Diagnosis
- 4-fold rise in antibody titers to CMV
Herpes Simplex Virus (HSV)

- Herpes (Greek word herpein, “to creep”)
- Two antigenic types (HSV-1, HSV-2)
- Both infect the upper aerodigestive tract
- Transmission is by direct contact with mucous or saliva
Clinical manifestations:
- Gingivostomatitis and pharyngitis – most common in first episode
- Usually in children and young adults
- Fever, malaise, myalgias, anorexia, irritability

Physical exam
- Cervical lymphadenopathy
- Pharynx – exudative ulcerative lesions
- Grouped or single vesicles on an erythematous base
 - Buccal mucosa
 - Hard and soft palate
HSV

- Clinical manifestations
 - Acute illness evolves over 7-10 days
 - Rapid regression of symptoms
 - Resolution of lesions

- Immunocompromised patient
 - Persistent ulcerative lesions are common in patients with AIDS
 - Lesions more friable and painful
 - Aggressive treatment with IV acyclovir
Measles

- Paramyxovirus
- Linear, negative-sense, single stranded RNA virus
- Highest incidence in children sparing those under 6 months
- Decline in recent decade from immunization programs
Measles

- **Clinical manifestations**
 - Symptoms 9-11 days after exposure
 - Cough, coryza, conjunctivitis, fever
 - Kopliks spots (3 days after onset)
 - Pinpoint gray-white spots surrounded by erythema
 - Appear on mucous membranes
 - Common on buccal mucosa
Measles

- Diagnosis is clinical
- Further work-up for immunocompromized with more severe manifestations
 - Isolation from oropharynx, urine
 - Grown in cell culture
Human Immunodeficiency Virus (HIV)

- Pharyngitis
 - Usually opportunistic infection
 - HSV
 - CMV
 - Candida

- Viral particles have been detected in lymphoepithelial tissues of the pharynx
Streptococci

- Gram-positive spherical cocci arranged in chains
- Significant portion of indigenous microflora
- Found in oral cavity and nasopharynx
- Classified based on their hemolysis
 - Alpha, beta, or nonhemolytic
- Beta hemolytic bacteria further subdivided based on cell membrane carbohydrates (Lancefield Groups A, B, C, D, F, and G)
TABLE 16-2. USUAL HEMOLYTIC, BIOCHEMICAL, AND CULTURAL REACTIONS OF COMMON STREPTOCOCCI AND ENTEROCOCCI

<table>
<thead>
<tr>
<th></th>
<th>Susceptibility to</th>
<th>Bile Solubility</th>
<th>Bile/Esculin Reaction</th>
<th>PYR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacitracin</td>
<td>Optochin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Hemolytic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lancefield group A</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Lancefield groups B, C, F, G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-Hemolytic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Viridans group</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nonhemolytic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Enterococci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All are tests commonly substituted for serological identification in clinical laboratories.
 b Tests for the ability to grow in bile and reduce esculin.
 c PYR = pyrrolidonyl arylamidase test.
Group A Streptococcus (beta-hemolytic)
Streptococcus

- **Reasons for treating Group A streptococcus**
 - 1) relief of symptoms related to infection
 - 2) prevent rheumatic fever
 - 3) prevent suppurative sequelae
 - 4) prevent further spread of group A streptococcus in the community
Streptococcus

- Clinical characteristics
 - Sore throat
 - Erythema of the involved tissues with or without purulent exudate
 - Petechiae of the soft and hard palate
Group A Streptococcus

Diagnosis

- All patient with suspected group A streptococcal pharyngitis should be test for the organism.

- Methods include
 - rapid antigen detection tests (RADT) – 10min,
 - slide-culture test using a bacitracin disk - overnight
 - Blood agar culture - overnight
Group A Streptococcus

- Recurrent pharyngitis
 - Bacteria inhibited but not killed
 - Beta-lactamase produced by normal flora (staphylococci and anaerobes)
 - Drug tissue levels (different absorption)
 - Re-infection by family members
Neisseria gonorrhoea

- Gram-negative diplococci
- Two pathogenic types of *Neisseria*
- *N. gonorrhoea* causes pharyngitis with exudate
- Diagnosis requires high index of suspicion in patients with suggestive sexual history
N. gonorrhea

- Diagnosis
 - Gram-stain from swab
 - 95% sensitive
 - 50% specific
 - Culture should always be done
 - Grows on chocolate agar with high CO2
 - Rapid nucleic acid probe tests now available
Neisseria gonorrhoea
Corynebacterium diphtheriae

- Causative organism of diphtheria
- Gram-negative bacillus
- Produces exotoxin at site of infection
 - Travels to heart and nervous system
- Spread by close contact via droplets or contaminated articles
- Humans are the sole carriers of the organism
- More common in children < 10 years
- Rare occurrence today because of routine vaccination
C. diphtheria

- Clinical manifestations
 - Systemic symptoms from exotoxin
 - Fatigued
 - Lethargic
 - Tachycardic
 - Toxic
C. diphtheriae

- Clinical characteristics
 - Pharynx
 - grayish membrane (composed of fibrin, leukocytes, and cellular debris)
 - extends from pharynx to larynx
 - Extensive cervical lymphadenopathy (‘bull neck’)
Treponema pallidum

- Causative agent of syphilis
- First recognized in the 16th century
- First isolated by Schaudinn and Hoffman in 1905
- Member of the Spirochete family along with Borrelia, Leptospira, and Fusobacteria
- Endoflagella
Syphilis

- Transmitted by direct sexual contact with individuals with primary or secondary syphilitic lesion
- Organism multiplies locally
- Primary lesion 2-10 days after infection
 - Chancre – hard-based, non-tender ulcer
Syphilis

- **Primary**
 - Single ulcer at the site of infection
 - Resolves in 3-8 weeks if untreated
- **Secondary**
 - Systemic dissemination
 - Symmetric mucocutaneous, maculopapular rash and generalized non-tender LAD
 - 1/3 develop condylomata lata
Diagnosis

- dark field microscopy
- fluorescent antibody microscopy
- Rapid plasma reagin (RPR)
- Fluorescent treponemal antibody absorption (FTA-ABS)
- Microhemagglutinatinoin assay for antibodies to *T. pallidum* (MHA-TP)
Treponema pallidum
Tuberculosis

♦ Pharyngitis
 - Secondary to expectoration of infected sputum
 - Granular or ulcerated surface mucosa

♦ Laryngitis
 - Most common granulomatous disease of the larynx
 - Posterior third of glottis – most common site
Tuberculosis

- **Diagnosis**
 - Demonstrating the tubercle bacilli in the sputum, urine, body fluids, or tissue
 - Acid fast stain allows for quick identification
 - Culture must be done to confirm the specific AFB and to determine sensitivities
Other bacteria

- Mycoplasma pneumoniae
- Chlamydia pneumoniae
- Influenza A and B
Fungal pharyngitis
Candida albicans

- An opportunistic fungus
- Normally present in the oral cavity
- Ability to adhere to mucosa is a distinguishing feature
C. albicans

- Causes of candidiasis
 - Increase relative proportion
 - long term antibiotics
 - Compromise of general immune capacity of host
 - Leukopenia
 - Corticosteroid therapy
 - T lymphocyte dysfunction
 - AIDS
 - Medications – cyclosporin
 - leukemia
 - Diabetes mellitus
Candidiasis

- Clinical manifestations
 - White, cheesy plaque
 - Loosely adherent to mucosa
 - Painless
 - Painful if removed
Candidiasis

- Diagnosis
 - Usually made clinically
 - Exudates or epithelial scrapings may be examined by KOH prep or G-stain
 - Demonstration of budding yeast associated with hyphae and pseudohyphae is diagnostic
Candida
thank you